Overall Confidence Rating: H

## Site: Tomato (Page 1)

Background: During 1994-96, there was a mean of 472,000 harvested acres (72% processed<sup>18</sup>, 28% fresh). CA, FL, OH, IN, and NY comprised 90% of the acreage<sup>4</sup>. Of the 874,000 acres treated, 17% were treated with organophosphates. Organophosphates were applied approximately 3.1 times per acre per year during the period<sup>5</sup>. Fresh tomatoes were treated much more than processed. CA produced about 95% of the processed and FL produced most of the fresh. The following insecticides have usage, registration, and tolerances<sup>12</sup> for tomatoes.

| Organophosphate                         | % Treated <sup>1</sup>       |                             | # Applications                |                                | Rate (lb.        | AI/A)                          | PHI (days)       |                                             |
|-----------------------------------------|------------------------------|-----------------------------|-------------------------------|--------------------------------|------------------|--------------------------------|------------------|---------------------------------------------|
| Pesticides                              | Max                          | Avg                         | Max <sup>2</sup>              | $Avg^1$                        | Max <sup>2</sup> | Avg <sup>1</sup>               | Min <sup>2</sup> | Avg                                         |
| azinphos-methyl <sup>1, 5, 10, 17</sup> | 25                           | 15                          | 411                           | 1.510                          | 1.5              | $0.6^{10}$                     | 0                | 7 <sup>3a,c</sup> -<br>14 <sup>3c,e,u</sup> |
| methamidophos <sup>1, 5, 10, 17</sup>   | Process<br>11<br>Fresh<br>90 | Process<br>9<br>Fresh<br>58 | 5                             | Process<br>1.1<br>Fresh<br>4.2 | 1                | Process<br>0.9<br>Fresh<br>0.8 | 7                | 14 <sup>3a</sup>                            |
| dimethoate <sup>1,5,10,17</sup>         | 10                           | 9                           | $2^{3}$                       | 1.410                          | 0.5              | $0.5^{10}$                     | 7                | 7 <sup>3a,c,e</sup>                         |
| malathion <sup>1, 5, 10, 17</sup>       | 9                            | 4                           | Not<br>specified<br>on labels | 2.5                            | 21.6             | 0.2                            | 1                | 1 <sup>3a</sup>                             |
| diazinon <sup>1, 5, 10, 17</sup>        | 7                            | 4                           | 5                             | 2                              | 11.5             | 0.4                            | 1                | 1 <sup>3c</sup> -60 <sup>3a,t</sup>         |
| chlorpyrifos <sup>1, 5, 10, 17</sup>    | 4                            | 2                           | 8                             | 1.4                            | 1                | Not<br>Availab<br>le           | 14               | Not<br>Availab<br>le                        |
| methyl parathion <sup>1,5,10</sup>      | 3                            | 1                           | Not<br>specified<br>on labels | 1 <sup>3d</sup>                | 1.5              | 1 <sup>7e</sup>                | 5                | 15 <sup>3a</sup>                            |
| disulfoton <sup>1, 5, 17</sup>          | $0.1^{3a}$                   | 0                           | 1                             | 1                              | 3                | 1.3                            | 30               | 90 <sup>3a</sup>                            |

Confidence Rating: H= hi

H= high confidence = data from several confirming sources; confirmed by personal experience

M = medium confidence = data from only a few sources; may be some conflicting or unconfirmed info.

L = low confidence = data from only one unconfirmed source

| Organophosphate Target Pests for Tomatoes <sup>5</sup> |                                                                                                                                                                                       |  |  |  |  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Major                                                  | aphids (potato, green peach) <sup>6,7a</sup> , tomato pinworm; wireworms; whiteflies (silverleaf <sup>7a</sup> ); leafminer ( <i>Liriomyza</i> <sup>7a</sup> )                        |  |  |  |  |
| Moderate                                               | flea beetles; cutworm; symphylans; beet leafhopper <sup>7a</sup> ; tomato fruitworm; beet armyworm; Colorado potato beetle; fruit flies ( <i>Drosophila</i> <sup>7a</sup> ); crickets |  |  |  |  |
| Minor                                                  | thrips; stink bugs; lygus bugs                                                                                                                                                        |  |  |  |  |

Major = 20+% of all OP usage on pest; Moderate = 5-20% of all OP usage on pest; Minor =<5% of all OP usage on pest

Note: Fonofos, oxydemeton-methyl, dicrotophos, naled<sup>19</sup>, and acephate have usage but not tolerances<sup>5, 12</sup>.

## **Sources:** (Crop and Pest Summaries)

- <sup>1</sup>QUA. 1993-1997. EPA Quantitative Usage Analysis. Methamidophos is the only insecticide for which average numbers of applications and lbs per year are available for fresh and processed; therefore, weighted averages are given for fresh and processed.
- <sup>2</sup>LUIS. 1998. Label Use Information System, version 5.0, EPA.
- <sup>3a</sup>QUA+, Quantitative Usage Analysis, EPA. California Processing Tomato Industry FQPA Response. 1997. Diazinon and disulfoton were applied at plant.
- <sup>3b</sup>QUA+, Quantitative Usage Analysis, EPA. California Tomato Research Institute report to NCFAP. Insecticide Use on California Tomatoes. 1995. Wireworms, potato aphids, and stink bugs listed as major pests in processed tomatoes.
- <sup>3c</sup>QUA+, Quantitative Usage Analysis, EPA. Pesticide Use and Usage in Michigan 1997. 1998.
- <sup>3e</sup>QUA+, Quantitative Usage Analysis, EPA. Rutgers University, NJ. 1998.
- <sup>3f</sup>QUA+, Quantitative Usage Analysis, EPA. Valent. Methamidophos. 1998.
- <sup>3g</sup>QUA+, Quantitative Usage Analysis, EPA. Atochem. Methyl Parathion. 1998.
- <sup>3t</sup>MI had ca. 2% of acreage and CA 98%<sup>4</sup>, so weighted average PHI is 59.
- <sup>3u</sup>MI 2%, and CA 98% of the acreage<sup>4</sup>, so weighted average PHI is 13.
- <sup>4</sup>Agricultural Statistics. USDA. 1998.
- <sup>5</sup> Proprietary EPA Quantitative Pesticide Usage. 1997.
- <sup>6</sup> Proprietary EPA Quantitative Pesticide Usage. 1997.
- <sup>7a</sup>University of California, Pest Management Guidelines, Tomato. 1997.
- <sup>7b</sup>University of Florida, 1996 Florida Insect Management Guide, Insect Management in Tomatoes. 1996.
- <sup>7c</sup>Ohio Vegetable Production Guide, Tomatoes: Fresh Market and Processing, Insect Control. 1997.
- <sup>7d</sup>Purdue University [IN], Management of Insect Pests on Fresh Market Tomatoes. 1993.
- <sup>7</sup>eCornell [NY] Cooperative Extension, Pest Management Recommendations, Control of Insect Pests of Tomatoes. 1998.
- <sup>8</sup> Proprietary EPA Quantitative Pesticide Usage. 1996.
- <sup>10</sup>Agricultural Chemical Usage Vegetables 1996. USDA National Agricultural Statistics Service. 1997.
- <sup>11</sup>Insect Control Guide. Meister Publishing. 1997.
- <sup>12</sup>Tolerance Index System. EPA. 1998.
- <sup>13</sup>Arthropod Management Tests. Ent. Soc. America. 1997.
- <sup>14</sup>Arthropod Management Tests. Ent. Soc. America. 1996.
- <sup>15</sup>Arthropod Management Tests. Ent. Soc. America. 1994.
- <sup>16</sup>EPA Section 18 records. 1995-1998.
- <sup>17</sup>US Geological Survey, Pesticide National Synthesis Project, Tomatoes for 1997. 1998.
- <sup>18</sup>Balling, S., Processed Tomato Foundation, 925-944-7377, stated in telephone communication that up to 95% of processed tomatoes produced in CA. 7/8/98.
- <sup>19</sup>FR 63:3057-3060. WWW.cas.psu.edu/docs/.
- <sup>20</sup>OP Tolerance Assessment Matrix Populating Instructions & Data Dictionary, EPA, 1998.
- <sup>21</sup>Rivara, C. California Processing Tomato Industry. Comments on draft. July 17, 1998.
- <sup>22</sup>University of California. California Pesticide Use Summaries, Tomato, Tomato (processing/canning) for 1994. 1998.
- <sup>23</sup>California Dept. Pesticide Regulation and Univ. California Statewide IPM Program. Pest Management Survey Database. Tomato. 1996
- <sup>24</sup>Agricultural Information Services, Ltd. 1997. World Pest Infestation Database. Tomato, Georgia, North Carolina, California.
- <sup>25</sup>www.nass.usda.gov/oh, ny, in. 1997 vegetable production stats. 1998.

Date: 8/3/98

Site: Tomato (Processed - 70% and Fresh - 20%) Region: North Central US (OH, IN, and NY)

| Pest                                                 | Organophosphate                  | Efficacy | Mkt               | Class | Alt. Pesticide List        | Efficacy | Mkt               | Constraints of Alternatives                                                                                                                                    |  |  |
|------------------------------------------------------|----------------------------------|----------|-------------------|-------|----------------------------|----------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Timing: All plant stages                             |                                  |          |                   |       |                            |          |                   |                                                                                                                                                                |  |  |
| tomato<br>pinworm<br>(major) <sup>5</sup>            | methyl parathion <sup>5,3g</sup> |          | high <sup>5</sup> |       |                            |          |                   |                                                                                                                                                                |  |  |
|                                                      | methamidophos <sup>5</sup>       |          | med <sup>5</sup>  |       |                            |          |                   |                                                                                                                                                                |  |  |
| Colorado<br>potato beetle<br>(moderate) <sup>5</sup> | azinphos methyl <sup>5</sup>     |          | low <sup>5</sup>  | С     | carbaryl <sup>5</sup>      |          | high <sup>5</sup> | Preplant imidacloprid effective in Maryland <sup>13</sup> . <i>Bacillus thuringiensis</i> , methoxychlor, disulfoton, abamectin, cryolite, cyfluthrin, lambda- |  |  |
|                                                      |                                  |          |                   | Р     | esfenvalerate <sup>5</sup> |          | high <sup>5</sup> | cyhalothrin, methamidophos, methyl parathion, oxamyl also recommended <sup>7c,d,e</sup> . MI lists endosulfan and esfenvalerate with medium                    |  |  |
|                                                      |                                  |          |                   | СН    | endosulfan <sup>5</sup>    |          | med <sup>5</sup>  | efficacy as alternatives to azinphos methyl (medium market share); azinphos methyl important for IRM <sup>3e</sup> .                                           |  |  |
| fruit fly,  Drosophila  (moderate) 5,7c              | diazinon <sup>5</sup>            |          | high <sup>5</sup> |       |                            |          |                   | azinphos methyl, malathion, methoxychlor, and pyrethrum also recommended <sup>7c</sup> .                                                                       |  |  |
| cricket (moderate) <sup>5</sup>                      | diazinon <sup>5</sup>            |          | med <sup>5</sup>  | Р     | esfenvalerate <sup>5</sup> |          | high <sup>5</sup> | Late season fruit pest <sup>7c</sup> .                                                                                                                         |  |  |
|                                                      |                                  |          |                   | СН    | endosulfan <sup>5</sup>    |          | high <sup>5</sup> |                                                                                                                                                                |  |  |
|                                                      |                                  |          |                   | C     | carbaryl <sup>5</sup>      |          | med 5             |                                                                                                                                                                |  |  |

## ADDITIONAL INFORMATION:

Analyzed pests make up >95% of OP usage. Dicrotophos listed as used for Colorado potato beetle, but no tolerance for tomato.<sup>5</sup> No alternative for diazinon for fruit fly. MI<sup>3c</sup> lists potato aphid as important pest with dimethoate and endosulfan usage (both high efficacy).

**SOURCES:** See crop summary.

Date: 6/24/98

Pest Importance: Major = 20+% of all OP usage on pest; Moderate = 5-20% of all OP usage on pest; Minor = <5% of all OP usage on pest

Efficacy Rating: Excellent = © Good = O Fair = •

Market Share: High = use of OP represents 20+% of all insecticide usage on pest; Med = 5-20% of all usage on pest; Lo = <5% of all usage on pest Insecticides: C = Carbamates; P = Pyrethroids; CH = Chlorinated Hydrocarbons; IGR = Insect Growth Regulators; B = Biological; O = Other pesticides